Title of blog

FIGHTING VIRUS WITH CHEMISTRY

Search This Blog

Tuesday, October 16, 2012

This is a cool article Sam Choi found:


ScienceDaily (Mar. 26, 2012) — The traditional way of making medicines from ingredients mixed together in a factory may be joined by a new approach in which doctors administer the ingredients for a medicine separately to patients, and the ingredients combine to produce the medicine inside patients' bodies.

That's one promise from an emerging new field of chemistry, according to the scientist who founded it barely a decade ago. Carolyn Bertozzi, Ph.D., spoke on the topic -- bioorthogonal chemistry -- in San Diego on March 27 in delivering the latest Kavli Foundation Innovations in Chemistry Lecture at the 243rd National Meeting & Exposition of the American Chemical Society (ACS).
Bertozzi explained that the techniques of bioorthogonal chemistry may fundamentally change the nature of drug development and diagnosis of disease, so that the active ingredients for medicines and substances to image diseased tissue are produced inside patients.
"Suppose a drug doesn't reach diseased tissue in concentrations high enough to work," Bertozzi said, citing one example of the potential of the new chemistry. "Maybe it is an oral drug that doesn't get absorbed very well into the blood through the stomach. You can imagine a scenario in which doctors administer two parts of the molecule that makes up the drug. The two units reach diseased tissue in large amounts or get absorbed through the stomach just fine. Then they recombine, producing the actual drug in the patient's body. Bioorthogonal chemistry is chemistry for life…literally!"
Bertozzi explained that bioorthogonal chemistry opens the door to creating new proteins, fats and sugars directly inside living cells without harming them. The field emerged from her frustration in the late 1990s with the lack of tools available to see sugars on the surfaces of living cells. Chains of these sugars, called glycans, sit on the surfaces of cells in the body and control the doorways through which different molecules enter. When a disease-causing virus enters and infects a cell, for instance, proteins on the virus's surface attach to certain glycans.
"To do that, we had to come up with a chemical reaction that would be really selective, only targeting the sugar of interest and the fluorescent probes that we delivered to it," said Bertozzi. The chemicals also couldn't stick to other biomolecules that the researchers didn't want to see.
That turned out to be a tall order, indeed. "We pulled all of our big textbooks off the shelves and flipped through them to see if there was something out there that fit our criteria," she said. Those criteria were essentially the conditions inside a living cell or living organism such as a mouse -- a reaction that could occur in water at pH 7 and at 98.6 degrees Fahrenheit. The reaction also couldn't interfere with all the other biomolecules in a cell or organism that keep it alive.
"It was a pretty restrictive set of conditions that a traditionally trained organic chemist like me never had to work within," she explained. That's because these types of reactions are usually performed in very clean, dry test tubes and flasks under conditions that the chemist can control. A living cell or organism, with all its water, proteins, fats, sugars and metabolites is very messy and uncontrollable by comparison.
Bertozzi and her team at the University of California, Berkeley, went on to develop a slew of reactions that can add fluorescent labels to biomolecules.
Now, the field is exploding, with her group and others reporting new bioorthogonal chemical reactions every year that help researchers see sugars, fats, proteins, and even DNA and RNA, that can't be seen using conventional methods. Researchers currently use the reactions not only to see where a biomolecule is within a living cell or organism, but also to determine when a biomolecule is made and what it binds to. Researchers also are using the methods to add things besides labels, like drugs, to various biomolecules. Some of the chemicals used for the reactions are currently available separately or in kits.
Several of Bertozzi's reactions are patented, and some are licensed to companies, including Redwood Bioscience, a company she co-founded with David Rabuka, Ph.D. The company is focused on bringing this technology to the clinic.
The scientists acknowledged funding from the National Institutes of Health and the Howard Hughes Medical Institute.
Take a look at this neat article I found:


US scientists have developed a method to deliver probes into cells to track the cells. Therapies such as those based on stem cells that require whole body tracking using non-invasive imaging, for example magnetic resonance imaging (MRI), would benefit from the probes.
Current nanoparticle-based tracking systems rely on probes entering cells passively, which is inefficient because the probes often get sequestered in endosomes (compartments in cells that sort molecules for degradation or recycling back to the cell membrane). Now, a team from the Lawrence Berkeley National Laboratory led by Brett Helms has avoided this problem by coating a nanocrystal probe with a polymer vector colloid and attaching guanidine and amine groups to the polymer so that the whole thing mimics a virus.
'In this manner, we would be able to recapitulate a virus' ability to quickly enter cells - in our case, with nanocrystal imaging probes as cargo,' explains Helms. Nanocrystal probes are desirable because they can be tailored for specific imaging techniques such as MRI or whole-body fluorescence imaging.
The team also found that as well as providing an exceptionally fast cell-entry trajectory, the coating prevented the nanocrystal cargo from having a negative impact on long-term cell health. 'We hypothesised that this is related to the shorter residence time of the vector-bound nanocrystals in endosomes, where they can degrade in the acidic microenvironment into toxic ions,' explains Helms, 'and the ability of the vector to keep the nanocrystals from diffusing widely in the cell's interior, where they can be expected to disrupt cellular processes.'
'The colloidal polymer vectors will make a significant difference in the field of cancer biology, as they present an unique opportunity to track different cell types in vivo for analysis,' says Eva Harth, an expert in developing vectors for imaging reagents at Vanderbilt University, US. 'The combination of nanocrystal confinement in the colloidal vector, rapid uptake and a high overall nanocrystal concentration in intact cells makes the luminescence of the localisation pattern in the cystosol [the liquid inside cells] much more intense. With this, an entire new arena of in vivo cell tracking and analysis is possible and can be further developed for other imaging devices with greater tissue depth.' 
Helms' team now plans to implant and image probes in mice to prove that they are ready to be used for cell tracking.

Making Drugs Inside Patients

A very interesting article on new research being done through chemistry. A new field of chemistry can potentially be used to create drugs inside patients.

http://www.sciencedaily.com/releases/2012/03/120327091055.htm